Home
Class 12
MATHS
int(0)^(1)(e^(-2x))/(1+e^(-x))dx=...

`int_(0)^(1)(e^(-2x))/(1+e^(-x))dx=`

A

`log((1+e)/e)-1/e+1`

B

`log((1+e)/(2e))-1/e+1`

C

`log((1+e)/(2e))+1/e-1`

D

`log((1+e)/2)+1/e-1`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(1)(1)/(e^(x)+e^(-x))dx=

int_(0)^(1) (dx)/(e^(x) +e^(-x)) dx is equal to

int _(-1)^(1) (e^(x^(3)) +e^(-x^(3))) (e^(x)-e^(-x)) dx is equal to

Let f(x)=(e^(x)+1)/(e^(x)-1) and int_(0)^(1) x^(3) .(e^(x)+1)/(e^(x)-1) dx= alpha "Then" , int_(-1)^(1) t^(3) f(t) dt is equal to

int_(1)^(e)e^(x)((1+xlogx)/(x))dx

int_(1)^(2) e^(x)(1/x-1/x^(2))dx=

If int_(log2)^(a)(e^(x))/(sqrt(e^(x)-1))dx=2 then a=

The value of the integral overset(log5)underset(0)int(e^(x)sqrt(e^(x)-1))/(e^(x)+3)dx , is