Home
Class 12
MATHS
The value of the integral overset(log5)...

The value of the integral `overset(log5)underset(0)int(e^(x)sqrt(e^(x)-1))/(e^(x)+3)dx`, is

A

`3+2pi`

B

`4-pi`

C

`2+pi`

D

`4+pi`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

inte^(x)/sqrt(e^(2x)+4e^(x)+13)dx=

The value of the integral overset(pi//4)underset(0)int sin^(-4)x dx , is

The value of the integral overset(2a)underset(0)int (f(x))/(f(x)+f(2a-x))dx is equal to

int (x^(e-1) +e^(x-1))/(x^e+e^x) dx

int_(0)^(1)(e^(-2x))/(1+e^(-x))dx=

int (e^(x)+e^(-x))^(2)*(e^(x)-e^(-x))dx is equal to

int1/((e^(2x)+e^(-2x))^(2))dx=