Home
Class 12
MATHS
int(-pi//4)^(pi//2) e^(-x) sin x dx is ...

`int_(-pi//4)^(pi//2) e^(-x) ` sin x dx is equal to

A

(a) `-1/2e^((-pi)/2)`

B

(b) `-(sqrt(2))/2e^((-pi)/4)`

C

(c) `1/2(sqrt(2) e^((pi)/4)-e^((-pi)/2))`

D

(d) `0`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_(-pi//2)^(pi//2)(1)/(e^(sinx)+1) dx is equal to

int_(0)^(pi//2)e^(x)sinx dx=

int _(pi//4)^(pi//2) "cosec"^(2)dx is equal to

int_(pi/4)^(pi/2) e^x(logsinx+cotx)dx

int_(0)^(pi)sin^(2)x dx is equal to

int_(0)^(pi//4)(cosx-sinx)dx+int_(pi//4)^(5pi//4)(sinx-cosx)dx+int_(2pi)^(pi//4)(cosx-sinx)dx is equal to

int_0^pi x f(sin x)dx is equal to

int_(pi//4)^(3pi//4)(dx)/(1+cosx) is equal to

int_(0)^(pi//4) sec x log (sec x+tan x) dx is equal to

int _(0) ^(pi//4) sin (x- [x])d (x-[x]) is equal to