Home
Class 12
MATHS
int(0)^((pi)/(2))log(tanx)dx...

`int_(0)^((pi)/(2))log(tanx)dx`

A

`(pi)/2log_(e)2`

B

`-(pi)/2log_(e)2`

C

`pilog_(e)2`

D

0

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^((pi)/(2))log(sinx)dx=int_(0)^((pi)/(2))log(cosx)dx=(pi)/(2)log.(1)/(2)

If int_(0)^((pi)/2)log(cosx)dx=-(pi)/2log2 , then int_(0)^((pi)/2)log(cosecx)dx=

Evaluate the following definite integrals: \int_{0}^((pi)/4)log(1+ tanx) dx

Evaluate the following definite integrals: \int_{0}^((pi)/2) log(sin x) dx

int_(0)^(pi//2) log (cotx ) dx=

int_(0)^((pi)/2)(dx)/(1+(tanx)^(sqrt(2018)))=

int_(0)^((pi)/(2))(cosx-sinx)/(1+sinxcosx)dx

int_(0)^((pi)/2)cos^(6)x dx=

If M=int_(0)^((pi)/2)(cosx)/(x+2)dx and N=int_(0)^((pi)/4)(sinxcosx)/((x+1)^(2))dx , then the value of M-N is

The value of int_(0)^(pi//2)log((4+3sinx)/(4+3cosx))dx is