Home
Class 12
MATHS
The value of the integral overset(2a)und...

The value of the integral `overset(2a)underset(0)int (f(x))/(f(x)+f(2a-x))dx` is equal to

A

`a`

B

`a/2`

C

`2a`

D

`0`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

int(f'(x))/([f(x)]^(2))dx=

The value of the integral overset(pi//4)underset(0)int sin^(-4)x dx , is

The value of the integral overset(log5)underset(0)int(e^(x)sqrt(e^(x)-1))/(e^(x)+3)dx , is

int(f'(x))/([f(x)]^2)dx =

int [f(x)+xf'(x)]dx =

If intf(x)dx=f(x), then int{f(x)}^2dx is equal to

The value of int [f(x)g''(x) - f''(x)g(x)] dx is equal to

int_0^pi x f(sin x)dx is equal to

If f(x) = (x-1)/(x+1) , then f(2x) is equal to

overset(pi^(2)//4)underset(0)int sin sqrt(x)dx equals to