Home
Class 12
MATHS
The value of int(0)^(pi//4) log (1+ tan ...

The value of `int_(0)^(pi//4) log (1+ tan theta ) d theta` is equal to

A

(a) `(pi)/4 log2`

B

(b) `(pi)/4 "log"1/2`

C

(c) `(pi)/8 log2`

D

(d) `(pi)/8 "log"1/2`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_(-pi/4)^(pi/4) log(sectheta-tantheta)d theta is

The value of int_(-pi/4)^(pi/4) log(sectheta-tantheta)d theta is

int _(0)^(pi//4) sec^(7) theta sin^(3) theta d theta is equal to

The value of int_(0)^(pi) | sin^(3) theta | d theta is

The value of \int_{- pi }^(2 pi ) log(sec theta - tan theta ) d theta is........... A) 1 B) 0 C) 2 D) 3

int_(0)^(pi//4) sec x log (sec x+tan x) dx is equal to

int_(0)^(pi//8) cos^(3)4 theta d theta=

Chose the correct option int_0^(pi//2) sin theta d theta is equal to

\int_{0}^((pi)/4) log(1+2tan theta + tan^2 theta ) d theta =.........