Home
Class 12
MATHS
int(0)^(pi)log sin^(2)x dx=...

`int_(0)^(pi)log sin^(2)x dx=`

A

`2pilog_(e)(1/2)`

B

`pi log_(e)2`

C

`(pi)/2log_(e)(1/2)`

D

`pilog_(e)(1/2)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If I = int_(0)^(pi//4) sin^(2) x" "dx and J = int_(0)^(pi//4)cos^(2)x" " dx. then

int_(0)^(pi)sin^(2)x dx is equal to

If int_(0)^(pi//2) log cos x dx =(pi)/(2)log ((1)/(2)), then int_(0)^(pi//2) log sec x dx =

int_(0)^((pi)/(2))log(sinx)dx=int_(0)^((pi)/(2))log(cosx)dx=(pi)/(2)log.(1)/(2)

Evaluate the following definite integrals: \int_{0}^(pi) x sin^2 x dx

int_(0)^(pi//2) log (cotx ) dx=