Home
Class 12
MATHS
int(-1)^(1)log((1+x)/(1-x))dx=...

`int_(-1)^(1)log((1+x)/(1-x))dx=`

A

(a) `2`

B

(b) `1`

C

(c) `0`

D

(d) `-1`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(-1)^(1)sqrt((1-x)/(1+x))dx=

int_(-1)^(1)log(x+sqrt(x^(2)+1))dx=?

int_(0)^(1)(e^(-2x))/(1+e^(-x))dx=

int_(0)^(1)(1)/(e^(x)+e^(-x))dx=

int_(-1)^(1) (1+x^(3))/(9-x^(2)) dx =

int_(1)^(e)(1+logx)/(x)dx

int_(1)^(e)e^(x)((1+xlogx)/(x))dx

int_(-1//2)^(1//2)(cosx)[log((1-x)/(1+x))]dx is equal to

If int1/((x^(2)-1))log((x-1)/(x+1))dx=A[log((x-1)/(x+1))]^(2)+c , then A =