Home
Class 12
MATHS
Let d/(dx)F(x)=((e^(sinx))/x),x > 0. If...

Let `d/(dx)F(x)=((e^(sinx))/x),x > 0.` If `int_1^4 3/x e^(sin x^3)dx=F(k)-F(1),` then one of the possible values of `k ,` is: 15 (b) 16 (c) 63 (d) 64

A

15

B

64

C

63

D

16

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

d/(dx) (e^(x sin x)) =

If int x^(2) e^(3x) dx = e^(3x)/27 f(x) +c , then f(x)=

If the function f(x)=x^(3)+e^(x//2)andg(x)=f^(-1)(x) , then the value of g'(1) is

If int1/((1+x^(2))sqrt(1-x^(2)))dx=F(x) " and " F(1)=0 , then for x gt 0, F(x)=

If int x^(3)e^(5x)dx=(e^(5x))/(5^(4))(f(x))+c then f(x)=

If f(x) = (e^(x)-e^(sinx))/(2(x sinx)) , x != 0 is continuous at x = 0, then f(0) =

If f(x) = {((3sin pix)/(5x), ",",x != 0),(2k, ",",x = 0):} is continuous at x = 0, then the value of k is equal to

Suppose that F (x) is an antiderivative of f (x)=sinx/x,x>0 , then int_1^3 (sin2x)/x dx can be expressed as

If \int_{0}^k 4 x^3 dx =16, then value of k is .......... A) 1 B) 2 C) 3 D) 4