Home
Class 12
MATHS
Suppose that F (x) is an antiderivative ...

Suppose that F (x) is an antiderivative of `f (x)=sinx/x,x>0` ,
then `int_1^3 (sin2x)/x dx` can be expressed as

A

(a) `F(6)-F(2)`

B

(b) `1/2[F(6)-f(2)]`

C

(c) `1/p[F(3)-F(1)]`

D

(d) `2[F(6)-F(2)]`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

int_0^pi x f(sin x)dx is equal to

If f(x)=(1)/(1-x) , then int(f_(o) f_(o)f)(x)dx=

int(sin2x)/(1+sin^(2)x)dx=

If f((3x-4)/(3x+4))=x+2 , then int f(x)dx is equal to

If f(x)=(x^(2)-1)/x^(3) , then intf(x)dx is

If f(x)+f(3-x)=0 , then int_(0)^(3)1/(1+2^(f(x)))dx=

int e^x sin x(sinx + 2cosx)dx =

if f(x)=|x-1| then int_(0)^(2)f(x)dx is

If f(x)=f(2-x) then int_(0. 5)^1.5 xf(x)dx=