Home
Class 12
MATHS
The value of the integral int(0)^((pi)/4...

The value of the integral `int_(0)^((pi)/4)(sqrt(tanx))/(sinx cos x) dx` equals

A

1

B

2

C

0

D

4

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the integral int_(0)^(pi//2)(sqrt(cotx))/(sqrt(cotx)+sqrt(tanx))dx is

int_(0)^((pi)/2)(cos^(3)x)/(sinx+cosx)dx

int_(0)^(pi//4)(sqrt(tanx)+sqrt(cotx))dx equals

int_(0)^((pi)/(2))log(tanx)dx

int 2sinx cos x dx is equal to

int_(0)^(pi//2)(sinx)/((sinx+cosx))dx=?

If the value of the integral I=int_(0)^(1)(dx)/(x+sqrt(1-x^(2))) is equal to (pi)/(k) , then the value of k is equal to

The value of integral \int_{(-pi)/3}^((pi)/3) frac{x sin x}{cos^2 x} dx is...........