Home
Class 12
MATHS
The value of int0^1 (x^4+1)/(x^2+1)dx is...

The value of `int_0^1 (x^4+1)/(x^2+1)dx` is

A

(a) `1/6(3pi-4)`

B

(b) `1/6(3-4pi)`

C

(c) `1/6(3pi+4)`

D

(d) `1/6(3+4pi)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_0^1(x^4(1-x)^4)/(1+x^2)\ dx is

int (x^4+1)/(x^2+1)dx

The value of int_(0)^(1)(x^(2))/(1+x^(2))dx is

int_0^1log(1+x)/(1+x^2)dx

The value of int_(0)^(1)x^(2)e^(x)dx is equal to

The value of int_0^1(8 log(1+x))/(1+x^(2)) dx is a) πlog2 b) π/8log2 c) π/2log2 d) log2

The value of inte^(2x)(1/x-1/(2x^(2)))dx is

If f(x)=|(sin x+sin 2x+sin3x,sin2x,sin3x),(3+4sinx,3,4sinx),(1+sinx,sinx,1)|, then the value of int_0^(pi/2) f(x) dx is

int_0^1 e^x(x-1)/(x+1)^3 dx