Home
Class 12
MATHS
The value of the definite integral int0^...

The value of the definite integral `int_0^1(1/(x^2+2xcosalpha+1))dx` for `0 < alpha < pi` is equal

A

`sin alpha`

B

`tan^(-1)(sin alpha)`

C

`alpha sin alpha`

D

`(alpha)/2(sin alpha)^(-1)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the integral l = int_(0)^(1) x(1-x)^(n) dx is

Evaluate the definite integrals int_0^1(dx)/(sqrt(1+x)-sqrt(x))

Evaluate the following definite integrals: \int_{0}^1 x^2 sqrt (1-x) dx

Evaluate the following definite integrals: \int_{0}^(pi) cos^2 x dx

the value of integral int_0^2 (log(x^2+2))/(x+2)^2dx is

Evaluate the following definite integrals: \int_{0}^(pi) x sin^2 x dx

The value of the definite integral 1/pi int_(pi/2)^((5pi)/2) e^(tan^(-1)(sinx))/(e^(tan^(-1)(sinx))+e^(tan^(-1)(cosx))) dx is

int_0^1log(1+x)/(1+x^2)dx

Evaluate the following definite integrals: \int_{0}^((pi)/2) log(sin x) dx

If the value of the integral I=int_(0)^(1)(dx)/(x+sqrt(1-x^(2))) is equal to (pi)/(k) , then the value of k is equal to