Home
Class 12
MATHS
If int(log 2)^(x)(du)/((e^(u)-1)^(1//2))...

If `int_(log 2)^(x)(du)/((e^(u)-1)^(1//2))=(pi)/(6)`, then `e^(x)` is equal to

A

(a) `1`

B

(b) `2`

C

(c) `4`

D

(d) `-1`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

int1/(1+e^(x))dx is equal to

int(1+x)/(x+e^(-x))dx is equal to

int(dx)/(sqrt(1-e^(2x))) is equal to

int(dx)/(e^(x)+e^(-x)+2) is equal to

int_(0)^(1) (dx)/(e^(x) +e^(-x)) dx is equal to

int_(0)^(1)(1)/(e^(x)+e^(-x))dx=

int(x+3)/(x+4)^(2)e^(x)dx is equal to

If int_(log2)^(a)(e^(x))/(sqrt(e^(x)-1))dx=2 then a=

int(dx)/(e^(x)+1-2e^(-x))=