Home
Class 12
MATHS
If I(m,n)=int0^1 t^m(1+t)^n.dt, then the...

If `I(m,n)=int_0^1 t^m(1+t)^n.dt`, then the expression
for I(m,n) in terms of I(m+1,n-1) is:
(a) `(2^(n))/(m+1)-n/(m+1)I(m+1,n-1)`
(b) `n/(m+1)I(m+1,n-1)`
(c) `(2^(n))/(m+1)+n/(m+1)I(m+1,n-1)`
(d) `m/(m+1)I(m+1,n-1)`

A

(a) `(2^(n))/(m+1)-n/(m+1)I(m+1,n-1)`

B

(b) `n/(m+1)I(m+1,n-1)`

C

(c) `(2^(n))/(m+1)+n/(m+1)I(m+1,n-1)`

D

(d) `m/(m+1)I(m+1,n-1)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

The expression frac{(1+i)^n}{(1-i)^(n-2)} equals

5m -n = 3m+4n then find the value of the expressions: (m^2+n^2)/(m^2-n^2)

If i^2 = -1 , then the value of sum_(n=1)^200 i^n is

1 + i^(2n) + i^(4n) + i^(6n)

If (1-i)^n = 2^n , then n=

If 5m-n =3m +4n , then find the values of the following expression: (3m+4n)/(3m-4n)

If P(m+n, 2) = 56 and P(m-n, 2) = 12 then the values of m and n are

If (frac{1+i}{1-i})^m = 1, then find the least positive integral of m

If sum of m terms is n and sum of n terms is m,then show that the sum of (m+n) terms is -(m+n) .