Home
Class 12
MATHS
If I(1)=overset(e^(2))underset(e )int(dx...

If `I_(1)=overset(e^(2))underset(e )int(dx)/(logx)"and "I_(2)=overset(2)underset(1)int(e^(x))/(x)dx`,then

A

`I_(1)=I_(2)`

B

`I_(1)gtI_(2)`

C

`I_(1)ltI_(2)`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

Let I_(1)=overset(2)underset(1)int(1)/(sqrt(1+x^(2)))dx and I_(2)=overset(2)underset(1)int(1)/(x)dx .Then

If f(x) =(e^(x))/(1+e^(x)),I_(1)=overset(f(a))underset(f(-a))int xg{x(1-x)}dx and I_(2)=overset(f(a))underset(f(-a))int g{x(1-x)}dx , where g is not identify function. Then the value of I_(2)//I_(1) , is

underset(0)overset(1)int e^(2logx)dx=

int (e^x(x-1))/x^2 dx =

int(dx)/(1+e^x) =

int(e^(tan^-1x))/(1+x^2)dx =

int_(1)^(e)(1+logx)/(x)dx