Home
Class 12
MATHS
Ifg(x)= int(0)^(x) cos 4t dt, "then " g ...

`Ifg(x)= int_(0)^(x) cos 4t dt, "then " g (x+pi)` equals

A

`g(x)+g(pi)`

B

`g(x)-g(pi)`

C

`g(x)g(pi)`

D

`(g(x))/(g(pi))`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(pi//3) cos 3x dx=

If f(x)=int_(-1)^(x)|t|dt , then for any x ge0,f(x) is equal to

For x epsilon(0,(5pi)/2) , definite f(x)=int_(0)^(x)sqrt(t) sin t dt . Then f has

If kint_(0)^(1)xf(3x)dx=int_(0)^(3)tf(t)dt , then the value of k is

int_(0)^(pi//4) sec x log (sec x+tan x) dx is equal to

If x=A cos 4t+B sin4t, then (d^(2)x)/(dt^(2)) is equal to

int_(0)^((pi)/2)cos^(6)x dx=

If 0<(x)<(pi) and cos x+sin x =1/2 , then tan x is equal to

int_(0)^(pi//6)(sinx)/(cos^(3)x) dx is equal to