Home
Class 12
MATHS
If f(x)=int(-1)^(x)|t|dt, then for any x...

If `f(x)=int_(-1)^(x)|t|dt`, then for any `x ge0,f(x)` is equal to

A

`1/2(1-x^(2))`

B

`1-x^(2)`

C

`1/2(1+x^(2))`

D

`1+x^(2)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=int_(0)^(x)sin^(6)tdt, then f(x+pi)=

If int_(-1)^(1)f(x)dx=0 then

int_0^pi x f(sin x)dx is equal to

int_(0)^(a)f(x)dx=

Let g(x)=1+x-[x] and f(x)={{:(-1",", x lt 0),(0",",x=0),(1",", x gt 0):} , then for all x , f[g(x)] is equal to

If f((3x-4)/(3x+4))=x+2 , then int f(x)dx is equal to

Ifg(x)= int_(0)^(x) cos 4t dt, "then " g (x+pi) equals

If f(x) = (x-1)/(x+1) , then f(2x) is equal to

If intf(x)dx=f(x), then int{f(x)}^2dx is equal to

If f(a+b - x) = f(x) , then int_(a)^(b) x f(x) dx is equal to