Home
Class 12
MATHS
If I=int(1/ e)^e|logx|(dx)/(x^2) ,then ...

If `I=int_(1/ e)^e|logx|(dx)/(x^2)` ,then `I` equals (A) 2 (B) `2/e` (C) `2(1-1/e)` (D) 0

A

2

B

`2/e`

C

`2(1-1/e)`

D

`0`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(1)^(e)(1+logx)/(x)dx

int_(1)^(e)e^(x)((1+xlogx)/(x))dx

int(e^(tan^-1x))/(1+x^2)dx =

int(e^(tan^(-1)x))/(1+x^2)dx

int_(0)^(1) (dx)/(e^(x) +e^(-x)) dx is equal to

int e^(x)""((x-1)/(x^(2)))dx is equal to

int_(1)^(2) e^(x)(1/x-1/x^(2))dx=

int1/((e^(2x)+e^(-2x))^(2))dx=

int(dx)/(e^(x)+e^(-x)+2) is equal to