Home
Class 12
MATHS
int(0)^((pi)/2)(tan^(7)x)/(cot^(7)x+tan^...

`int_(0)^((pi)/2)(tan^(7)x)/(cot^(7)x+tan^(7)x)dx` is equal to

A

(a) `(pi)/2`

B

(b) `(pi)/4`

C

(c) `(pi)/6`

D

(d) `(pi)/3`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(pi//4) tan^(6)x sec^(2)x dx=

int_(0)^(1)(tan^(-1)x)/((1+x^(2)))dx

inte^(tan^(-1)x)(1+(x)/(1+x^(2)))dx is equal to

int_(0)^(pi)sin^(2)x dx is equal to

int_(0)^(pi)(x tanx)/(sec x +tan x)dx

int(x+1)(x+2)^7(x+3)dx is equal to

The value of int(e^(x)(x^(2)tan^(-1)x+tan^(-1)x+1))/(x^(2)+1)dx is equal to

cot x+ tan x=

int_(0)^((pi)/2)(sin^(1000)x dx)/(sin^(1000)x+cos^(1000)x) is equal to