Home
Class 12
MATHS
int(0)^(pi//2) log (cotx ) dx=...

`int_(0)^(pi//2) log (cotx ) dx=`

A

1

B

0

C

`(pi)/2`

D

`(pi)/4`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If int_(0)^(pi//2) log cos x dx =(pi)/(2)log ((1)/(2)), then int_(0)^(pi//2) log sec x dx =

If int_(0)^((pi)/2)log(cosx)dx=-(pi)/2log2 , then int_(0)^((pi)/2)log(cosecx)dx=

int_(0)^((pi)/(2))log(sinx)dx=int_(0)^((pi)/(2))log(cosx)dx=(pi)/(2)log.(1)/(2)

int_(0)^((pi)/(2))log(tanx)dx

Evaluate: \int_{0}^(pi/2) log tanx dx

int_(0)^(pi//2) sin 2x log (tan x) dx is equal to a) π b) π/2 c) 0 d) 2π

int_(0)^(pi//2) abs(sinx-cosx) dx=

Evaluate the following definite integrals: \int_{0}^((pi)/2) log(sin x) dx

int_(0)^(pi//4) sec x log (sec x+tan x) dx is equal to