Home
Class 12
MATHS
If int(0)^((pi)/2)log(cosx)dx=-(pi)/2log...

If `int_(0)^((pi)/2)log(cosx)dx=-(pi)/2log2`, then `int_(0)^((pi)/2)log(cosecx)dx=`

A

`(pi)/2-(pi)/2log2`

B

`-(pi)/2log2`

C

`(pi)/2log2`

D

`(pi)/2+(pi)/2log2`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^((pi)/(2))log(tanx)dx

int_(0)^(pi//2) log (cotx ) dx=

If int_(0)^(pi//2) log cos x dx =(pi)/(2)log ((1)/(2)), then int_(0)^(pi//2) log sec x dx =

int_(0)^(2pi)(sinx+cosx)dx=

int_(0)^(pi//2)(dx)/(2+cosx)=

int_(0)^(pi)log sin^(2)x dx=

int_(0)^(pi//2)e^(x)sinx dx=

int_(0)^((pi)/(2))log(sinx)dx=int_(0)^((pi)/(2))log(cosx)dx=(pi)/(2)log.(1)/(2)