Home
Class 12
MATHS
int(0)^(pi)(xdx)/(1+sinx) is equal to...

`int_(0)^(pi)(xdx)/(1+sinx)` is equal to

A

(a) `(pi)/2`

B

(b) `pi`

C

(c) `(pi)/2log2`

D

(d) `pi log2`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(pi)(dx)/((1+sinx))=?

int_(pi//4)^(3pi//4)(dx)/(1+cosx) is equal to

int_(0)^(pi//4)(cosx-sinx)dx+int_(pi//4)^(5pi//4)(sinx-cosx)dx+int_(2pi)^(pi//4)(cosx-sinx)dx is equal to

int_(0)^(pi//2)e^(x)sinx dx=

int_(0)^(pi)sin^(2)x dx is equal to

int_(0)^(pi)x sin xdx=

The value of int_(-pi//2)^(pi//2)(1)/(e^(sinx)+1) dx is equal to

int_(0)^(2pi)(sinx+cosx)dx=

int_0^pi x f(sin x)dx is equal to