Home
Class 12
MATHS
int(pi//4)^(3pi//4)(dx)/(1+cosx) is equa...

`int_(pi//4)^(3pi//4)(dx)/(1+cosx)` is equal to

A

`-1`

B

`-2`

C

`2`

D

`4`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(-pi/4)^(pi/4)(dx)/(1+cos2x) is

int _(pi//4)^(pi//2) "cosec"^(2)dx is equal to

int_(-pi//4)^(pi//2) e^(-x) sin x dx is equal to

int_(0)^(pi//6)(sinx)/(cos^(3)x) dx is equal to

int_(0)^(pi//4)(cosx-sinx)dx+int_(pi//4)^(5pi//4)(sinx-cosx)dx+int_(2pi)^(pi//4)(cosx-sinx)dx is equal to

The value of int_(pi//4)^(3pi//4)(x)/(1+sinx) dx .. . . . .

int_(0)^(pi//2)(dx)/(2+cosx)=

The value of int_(-pi//2)^(pi//2)(1)/(e^(sinx)+1) dx is equal to

int_(pi//6)^(pi//4)cosec 2x dx=

Evaluate: int_(-pi//4)^(pi//4)(x+pi//4)/(2-cos2x)dx