Home
Class 12
MATHS
The value of the integral I = int(1//201...

The value of the integral `I = int_(1//2014)^(2014)(tan^(-1) x)/x dx` is

A

(a) `(pi)/4 log2014`

B

(b) `(pi)/2 log 2014`

C

(c) `pi log 2014`

D

(d) `1/2 log 2014`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the integral l = int_(0)^(1) x(1-x)^(n) dx is

int_(0)^(1)(tan^(-1)x)/((1+x^(2)))dx

The value of integral int _(1//pi)^(2//pi)(sin(1/x))/(x^(2))dx=

If the value of the integral I=int_(0)^(1)(dx)/(x+sqrt(1-x^(2))) is equal to (pi)/(k) , then the value of k is equal to

The value of the definite integral 1/pi int_(pi/2)^((5pi)/2) e^(tan^(-1)(sinx))/(e^(tan^(-1)(sinx))+e^(tan^(-1)(cosx))) dx is

The value of integral int1/[(x-1)^(3)(x+2)^(5)]^(1//4)dx is

The value of the integral int_alpha^beta 1/(sqrt((x-alpha)(beta-x)))dx

Evaluate the following integral: int_1^2 1/(x^2)e^(-1//x)dx

If int_(0)^(1) tan^(-1) x dx = p , then the value of int_(0)^(1) tan^(-1)((1-x)/(1 +x)) dx is