Home
Class 12
MATHS
If f(x)=(e^(x))/(1+e^(x)),I(1)=overset(f...

If f(x)`=(e^(x))/(1+e^(x)),I_(1)=overset(f(a))underset(f(-a))int xg{x(1-x)}dx` and `I_(2)=overset(f(a))underset(f(-a))int g{x(1-x)}dx`, where g is not identify function. Then the value of `I_(2)//I_(1)`, is

A

1

B

-3

C

-1

D

2

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

Let I_(1)=overset(2)underset(1)int(1)/(sqrt(1+x^(2)))dx and I_(2)=overset(2)underset(1)int(1)/(x)dx .Then

If I_(1)=overset(e^(2))underset(e )int(dx)/(logx)"and "I_(2)=overset(2)underset(1)int(e^(x))/(x)dx ,then

If overset(b)underset(a)int {f(x)-3x}dx=a^(2)-b^(2) , then the value of f((pi)/(6)) , is

If int1/((1+x)sqrt(x))dx=f(x)+A , where A is any arbitrary constant, then the function f(x) is

If f(x)=(1)/(1-x) , then int(f_(o) f_(o)f)(x)dx=

The value of the integral overset(2a)underset(0)int (f(x))/(f(x)+f(2a-x))dx is equal to