Home
Class 12
MATHS
int0^pi x f(sin x)dx is equal to...

`int_0^pi x f(sin x)dx` is equal to

A

`piint_(0)^(pi)f(cosx)dx`

B

`piint_(0)^(pi)f(six)dx`

C

`(pi)/2int_(0)^((pi)/2)f(sinx)dx`

D

`piint_(0)^((pi)/2)f(cosx)dx`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=f(pi+e-x) and int_e^pif(x)dx=2/(e+pi), then int_e^pi xf(x)dx is equal to

int_(0)^(pi)x sin xdx=

If f(a+b - x) = f(x) , then int_(a)^(b) x f(x) dx is equal to

int_(0)^(pi)sin^(2)x dx is equal to

int_(-pi//4)^(pi//2) e^(-x) sin x dx is equal to

int_(0)^(pi//4) sec x log (sec x+tan x) dx is equal to

If f((3x-4)/(3x+4))=x+2 , then int f(x)dx is equal to

The correct evalution of int_(0)^(pi//2) sin x sin 2x dx is

If intf(x)dx=f(x), then int{f(x)}^2dx is equal to

int _(0) ^(pi//4) sin (x- [x])d (x-[x]) is equal to