Home
Class 12
MATHS
If for nonzero x ,af(x)+bf(1/x)=1/x-5, ...

If for nonzero `x ,af(x)+bf(1/x)=1/x-5,`
where `a!=b` then `int_1^2f(x)dx= _ `

A

(a) `1/((a^(2)+b^(2)))[a log 2 -5a7/2b]`

B

(b) `1/((a^(2)-b^(2)))[a log 2-5a+7/2b]`

C

(c) `1/((a^(2)-b^(2)))[a log -5a-7/2b]`

D

(d) `1/((a^(2)+b^(2)))[a log 2-5a-7/2b]`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If for non-zero x, a. f (x) + b . f ((1)/(x)) =1/x-5, where a ne b, then f (2) =

int1/(x-x^(3))dx=

int1/(1+sin^(2)x)dx=

int1/(1+cos^(2)x)dx=

If f(x)=(1)/(1-x) , then int(f_(o) f_(o)f)(x)dx=

If int_(-1)^(1)f(x)dx=0 then

if f(x)=|x-1| then int_(0)^(2)f(x)dx is

int(x+1)/x^(1/2)dx=

If f(x)+f(3-x)=0 , then int_(0)^(3)1/(1+2^(f(x)))dx=