Home
Class 12
MATHS
Let f be the function defined on [-pi,pi...

Let `f` be the function defined on `[-pi,pi]` given by `f(0)=9`
and `f(x)=sin((9x)/2)/sin(x/2)` for `x!=0`.
The value of `2/pi int_-pi^pif(x)dx` is

A

(a) `0`

B

(b) `2`

C

(c) `4`

D

(d) `6`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_(-pi//2)^(pi//2)( 3sinx+sin^(3)x)dx is

int_0^pi x f(sin x)dx is equal to

The value of sqrt(2)int(sinx)/(sin(x-(pi)/(4)))dx , is

int_(0)^(2pi)e^(x/2).sin(x/2+(pi)/4)dx=

Evaluate: \int_{0}^(pi)x sin^3 x dx

If f(x)=f(pi+e-x) and int_e^pif(x)dx=2/(e+pi), then int_e^pi xf(x)dx is equal to

The value of integral int _(1//pi)^(2//pi)(sin(1/x))/(x^(2))dx=

Let f:R to R be defined as f (x) =( 9x ^(2) -x +4)/( x ^(2) _ x+4). Then the range of the function f (x) is

Evaluate: \int_{0}^(pi)x sin x cos^2 x dx