Home
Class 12
MATHS
int(0)^(oo)(x logx)/((1+x^(2))^(2)) dx=...

`int_(0)^(oo)(x logx)/((1+x^(2))^(2)) dx=`

A

(a) `7`

B

(b) `0`

C

(c) `5 log 13`

D

(d) `2 log5`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(2)(x^(3)dx)/((x^(2)+1)^(3//2)) is equal to

int_(0)^(a)(x)/(sqrt(a^(2)+x^(2)))dx

int_(1)^(e)(1+logx)/(x)dx

int_(0)^(1)(dx)/([ax+(1-x)b]^(2))=

int_(0)^(1)(tan^(-1)x)/((1+x^(2)))dx

int_(0)^(1)(dx)/(x^(2)-2x+2)=

The value of \int_{0}^(oo) frac{x log x}{(1+x^2)^2} dx is ...........