Home
Class 12
MATHS
Let I=int0^n[x]dx,n > 0, where [ ] is G....

Let `I=int_0^n[x]dx,n > 0,` where [ ] is G.I.F.,

A

(a) `n`

B

(b) `(n(n+1))/2`

C

(c) `(n(n-1))/2`

D

(d) None of these

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_0^9[sqrt(x)+2] dx, where [.] is the greatest integer function.

int_0^pixlogsinx dx

int_(0)^(a)f(x)dx=

int_(0) ^(3) [x] dx= __________ where [x] is greatest integer function

If int_(-1)^(1)f(x)dx=0 then

If f(x) =(e^(x))/(1+e^(x)),I_(1)=overset(f(a))underset(f(-a))int xg{x(1-x)}dx and I_(2)=overset(f(a))underset(f(-a))int g{x(1-x)}dx , where g is not identify function. Then the value of I_(2)//I_(1) , is

Prove that \int_{-a}^a f(x) dx = 0, if f(x) is odd function, =2 \int_{0}^a f(x) dx, if f(x) is an even function

Let I_(n)=inttan^(n)xdx , n gt 1 . I_(4)+I_(6)=atan^(5)x+bx^(5)+C , where C is a constant of integration , then the ordered pair ( a , b) is equal to

For every integer n, int_(n)^(n+1)f(x)dx=n^(2) , then the value of int_(0)^(5)f(x)dx=