Home
Class 12
MATHS
The value of the integral intalpha^beta ...

The value of the integral `int_alpha^beta 1/(sqrt((x-alpha)(beta-x)))dx`

A

(a) `pi`

B

(b) `2pi`

C

(c) `(pi)/2`

D

(d) None of these

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the definite integral int_0^1(1/(x^2+2xcosalpha+1))dx for 0 < alpha < pi is equal

The minimum value of (x-alpha)(x-beta) is: a)0 b) alphabeta c) 1/4(alpha-beta)^2 d) -1/4(alpha-beta)^2

If alpha and beta are imaginary cube roots of unity, then the value of (alpha)^4 + (beta)^28 + frac{1}{(alpha)(beta)} is

The lengths of the sides of a triangle are alpha-beta, alpha+beta and sqrt(3alpha^2+beta^2), (alpha>beta>0) . Its largest angle is

If tan beta=cos theta tan alpha , then prove that tan^(2)""(theta)/(2)=(sin(alpha-beta))/(sin(alpha+beta)) .

If cos(theta-alpha) = a and cos(theta-beta) = b then the value of sin^2(alpha-beta) + 2ab cos(alpha-beta)

If alpha,beta are the roots of 1+x+x^2=0 then the value of (alpha)^4+(beta)^4+(alpha)^-4(beta)^-4 =

If alpha and beta are complex cube roots of unity, then (1-alpha)(1-beta)(1-(alpha)^2)(1-(beta)^2) =

If alpha and beta are complex cube roots of unity, show that alpha^4 + beta^4 + alpha^(-1) beta^(-1) =0