Home
Class 12
MATHS
The least value of the function phi(x)=i...

The least value of the function `phi(x)=int_((7pi)/6)^(x)(4sint+3cost)dt` on the interval `[(7pi)/6,(4pi)/3]` is

A

(a) `(sqrt(3)+1)/2`

B

(b) `(sqrt(3)-1)/2`

C

(c) `(7(1-sqrt(3)))/2`

D

(d) `-((sqrt(3)+1)/2)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(pi/4)^(pi/2) e^x(logsinx+cotx)dx

int_(pi//6)^(pi//4)cosec 2x dx=

int_(-pi/4)^(pi/4)(dx)/(1+cos2x) is

int_(0)^(pi//6)(sinx)/(cos^(3)x) dx is equal to

The value of int_((pi)/4)^((-pi)/4)sin^(103)x .cos^(101)xdx is

Ifg(x)= int_(0)^(x) cos 4t dt, "then " g (x+pi) equals

The number of solutions of the equation cos^2(x+pi/6)+cos^2x-2cos(x+pi/6)dotcos(pi/6)=sin^2(pi/6) in interval ((-pi)/2,pi/2) is_________

The value of the integral int_(-pi//2)^(pi//2) (x^(2) + log" (pi-x)/(pi+x)) cos x dx

The value of sin^2 (pi/8)+sin^2 ((3pi)/8)+sin^2 ((5pi)/8)+sin^2 ((7pi)/8) is