Home
Class 12
MATHS
Prove that int(a)^(b)f(x)dx=(b-a)int(0)^...

Prove that `int_(a)^(b)f(x)dx=(b-a)int_(0)^(1)f((b-a)x+a)dx`

A

`a-b`

B

`b-a`

C

`a+b`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that \int_{a}^a f(x) dx = 0

int_(0)^(a)f(x)dx=

int_(0)^(1)cos^(-1)x dx=

int(a)/(b+ce^(x))dx=

int_(0)^(1)(1-x)^(9)dx=

Prove that \int_{a}^b f(x) dx = \int_{a}^b f(a+b-x) dx

int_(0)^(1)|3x-1|dx=

Prove that \int_{a}^b f(x) dx = \int_{a}^b f(t) dt

If int_(-1)^(1)f(x)dx=0 then

If : int_(0)^(2a)f(x)dx=2.int_(0)^(a)f(x)dx , then :