Home
Class 12
MATHS
If f(x) is a function satisfying f(1/x)+...

If `f(x)` is a function satisfying `f(1/x)+x^(2)f(x)=0` for all non zero `x` then `int_(cos theta)^(sec theta)f(x)dx=`

A

`cos theta+sec theta`

B

`cos^(2) theta`

C

`sec^(2) theta`

D

`0`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If a function f (x) is given as f (x) =x ^(2) -3x +2 for all x in R, then f (-1)=

If a function f (x) is given as f (x) = x^(2) -3x +2 for all x in R, then f (a +h)=

int_(0)^(a)f(x)dx=

Let f(x) be a function satisfying f'(x)=f(x) with f(0) =1 and g(x) be a function that satisfies f(x) + g(x) = x^2 . Then the value of the integral int_0^1f(x) g(x) dx , is

Let f be a real valued function, satisfying f (x+y) =f (x) f (y) for all a,y in R Such that, f (1) =a. Then , f (x) =

If int_(-1)^(1)f(x)dx=0 then

If f(x)=f(2-x) then int_(0. 5)^1.5 xf(x)dx=

IF f(x)=x,-1lexle1 , then function f(x) is

int(f'(x))/([f(x)]^(2))dx=

If f(x)=(1)/(1-x) , then int(f_(o) f_(o)f)(x)dx=