Home
Class 12
MATHS
If f(x)=int(0)^(x)sin^(6)tdt, then f(x+p...

If `f(x)=int_(0)^(x)sin^(6)tdt,` then `f(x+pi)=`

A

(a) `f(x)+f(pi)`

B

(b) `f(x)-f(pi)`

C

(c) `f(x)f(pi)`

D

(d) `(f(x))/(f(pi))`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(a)f(x)dx=

int_(0)^(pi)x sin xdx=

For x epsilon(0,(5pi)/2) , definite f(x)=int_(0)^(x)sqrt(t) sin t dt . Then f has

If f(x)=int_(-1)^(x)|t|dt , then for any x ge0,f(x) is equal to

If int_(-1)^(1)f(x)dx=0 then

If I = int_(0)^(pi//4) sin^(2) x" "dx and J = int_(0)^(pi//4)cos^(2)x" " dx. then

if f(x)=|x-1| then int_(0)^(2)f(x)dx is

If : int_(0)^(2a)f(x)dx=2.int_(0)^(a)f(x)dx , then :