Home
Class 12
MATHS
Let d/(dx)[f(x)]=(e^(sinx))/x, xgt0, If...

Let `d/(dx)[f(x)]=(e^(sinx))/x, xgt0,`
If `int_(1)^(4)(3e^(sinx^(3)))/xdx=f(k)-f(1)`, then one possible of `k` is

A

15

B

16

C

63

D

64

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

Let d/(dx)F(x)=((e^(sinx))/x),x > 0. If int_1^4 3/x e^(sin x^3)dx=F(k)-F(1), then one of the possible values of k , is: 15 (b) 16 (c) 63 (d) 64

int_(0)^(pi//2)e^(x)sinx dx=

If int x^(3)e^(5x)dx=(e^(5x))/(5^(4))(f(x))+c then f(x)=

If int x^(2) e^(3x) dx = e^(3x)/27 f(x) +c , then f(x)=

int_(0)^(pi//2)e^(x)((1+sinx)/(1+cosx))dx=?

If f(x)+f(3-x)=0 , then int_(0)^(3)1/(1+2^(f(x)))dx=

int _(-1)^(1) (e^(x^(3)) +e^(-x^(3))) (e^(x)-e^(-x)) dx is equal to