Home
Class 12
PHYSICS
A black hole is an object whose gravitat...

A black hole is an object whose gravitational field is so strong that even light cannot escape from it. To what approximate radius would earth (mass `=5.98xx10^(24)kg`) have to be compresed to be a black hole?

A

`10^(-9)` m

B

`10^(-6)`

C

`10^(-2)`

D

100 m

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

The gravitational force of attraction between Earth and Venus, if the distance between them is 2.5xx10^(7) km, is [mass of Venus = 4.8xx1^(24) kg, mass of the Earth =6xx10^(24) kg

Solve the following examples / numerical problems: Find the magnitude of the gravitational force between the Sun and the earth.( Mass of the Sun =2xx10^30 kg, mass of the earth = 6xx10^24 kg and the distance between the centres of the Sun and the earth = 1.5xx 10^11 m, G =6.67 xx10^-11 N-m^2 /kg^2 ).

Find the gravitational potential energy of a body of mass 10 kg when it is at a height of 6400 km from the earth's surface. [M (earth) = 6xx 10^24 kg, R(earth) =6400 km]

How much energy will be needed for a body of mass 100kg to escape from the earth- (g = 10m//S^(2) and radius of earth = 6.4 xx 10^(6) m)

Answer the following questions : Compare the gravitational force on a body of mass 1 kg due to the earth with the force on the same body due to another body of mass 1 kg at a distance of 1m from the first body. (Mass of the earth = 6xx10^24 kg, radius of the earth= 6400 km)

What is the gravitational potential due to the Earth at a point which is at a height of 2RE above the surface of the Earth, Mass of the Earth is 6xx10^24 kg, radius of the Earth = 6400 km and G = 6.67xx10^(-11) Nm^2 kg^(-2) .

If the force of gravitation between the Earth and an object of mass 'm' is 9xx10^7N . Find the mass of an object if the mass ofhte Earth 6xx10^24 kg and its radius is 6.4xx10^6 m.

Calculate the value of the universal gravitational constant from the given data. Mass of the Earth = 6xx10^24 kg, Radius of the Earth = 6400 km and the acceleration due to gravity on the surface = 9.8 m//s^2

If a satellite has to orbit the earth in a circular path every 6 hrs, what distance from the surface of the earth should the satellite be placed? (Radius of earth=6400 km) (Assume (GM/(4pi^2)) = 8xx10^12 Nm^2/kg , where G and M are gravitational constant and mass of the earth and 10^(1/3)=2.1 )

Calculate the gravitational force due to the Earth on Mahendra,if mass of Earth is 6xx10^24 kg,Radius is 6.4xx10^6m,g=9.77m//s^2 and mass of Mahendra is 75 kg .