Home
Class 12
PHYSICS
The Young's modulus of steel is twice th...

The Young's modulus of steel is twice that of brass. Two wires of the same length and of the same area of cross section, one of steel and another of brass are suspended from the same roof. If we want the lower ends of the wires to be at the same level, then the weight added to the steel and brass wires must be in the ratio of

A

`1 :1`

B

`1:2`

C

`2:1`

D

`4:1`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

P and Q are two wires of same length and different cross sectional areas and made of same material. Name the property which is same for both the wires.

If the resistance of wire A is three times the resistance of wire B and the two wires have the same length, compare their cross sectional areas. The two wires are made of the same material.

Two wires of the same material and of the same length are stretched by longitudinal force, each of the some magnitude. Compare the extension, produced if the radius of the first wire is twice the radius of the second wire

A composite wire is prepared by joining a tungsten wire and steel wire end to end. Both the wires are of the same length and the same area of cross section. If this composite wire is suspended to a rigid support and a force is applied to its free end, it gets extended by 3.25mm. Calculate the increase in length of tungsten wire and steel wire separately

Two wires A and B are stretched by the same load. If the area of cross-section of wire 'A' is double that of 'B,' then the stress on 'B' is

Two wires A and B of the same material are of uniform cross-section. Wire A is twice as long B and its diameter is thrice that of B. If the resistance of wire A is 10 ohm, find that of wire B.

Two uniform wires of a the same material are vibrating under the same tension. If the first overtone of the first wire is equal to the second overtone of the second wire and radius of the first wire is twice the radius of the second wire, then the ratio of the lengths of the first wire to second wire is

Two wires of copper having the length in the ratio 4 : 1 and their radii ratio as 1 : 4 are stretched by the same force. The ratio of longitudinal strain in the two will be

Two wires of same length are shaped into a square and a circle. If they carry same current, ratio of the magnetic moment is

Two wires of the same material and of the same diameter have their lengths in the ratio 1:3 and are under tension in the ratio 1:4 Compare their fundamental frequencies.