Home
Class 12
PHYSICS
The length of two open organ pipes are l...

The length of two open organ pipes are `l` and `(l+deltal)` respectively. Neglecting end correction, the frequency of beats between them will b approximately.

A

`(v)/(2L)`

B

`(v)/(4L)`

C

`(vDeltaL)/(2L^(2))`

D

`(vDeltaL)/(L)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

The lengths of two organ pipes open at both ends are L and L + d . If they are sounde together, then the beat frequency will be

An open organ pipe of length l and diameter d. If velocity of air is V then, The fundamental frequency of the pipe is

A closed organ pipe and an open organ pipe of same length produce 2 beats/second while vibrating in their fundamental modes. The length of open organ pipe is halved and that of closed pipe is doubled. Then, the number of beats produced per second while vibrating in the fundamental mode is

An open and closed organ pipe have the same length the ratio pth mode of frequency of vibration of air in two pipe is

The lengths of an open organ pipe is twice the length of another closed organ pipe. The fundamental frequency of the open pipe is 100 Hz. The freqeuncy of the third harmonic of the closed pipe is

If two open organ pipes of length 50 cm and 51 cm sounded together produce 7 beats per second , the speed of sound is

An open organ pipe of length is 50 cm, If the velocity of sound in air is 320 m/s , then the frequency of its fundamental note will be

Length of an organ pipe open at both ends in 33.3 cm. If velocity of sound is 333 m/s.,then the frequency of fifth overtone is

A closed pipe has certain frequency. Now its length is halved. Considering the end correction, its frequency will now become

Two tubes of length 50 cm and 51 cm, closed at one end, produce 35 beats in 10 second, when sounded with their fundamental notes . Neglecting end correction , find the velocity of sound in air.