Home
Class 11
MATHS
The inverse of the function f(x)=(e^x-e^...

The inverse of the function `f(x)=(e^x-e^(-x))/(e^x+e^(-x))+2` is given by

A

`log _(e) ((x-2)/(x-1))^(1/2)`

B

`log _(e) ((1-x)/(x-3)) ^(1/2)`

C

`log _(e) ((x)/(2-x))^(1/2)`

D

`log _(e) ((x-1)/(x+1)) ^(-2)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

int(e^x-e^-x)/(e^x+e^-x).dx

int (dx)/(e^x + e^-x)

The range of function f (x) = log _(e) sqrt(4- x ^(2)) is given by

int (e^(x)+e^(-x))^(2)*(e^(x)-e^(-x))dx is equal to

The function f defined by f(x)=(x+2)e^(-x) is

int (x^(e-1) +e^(x-1))/(x^e+e^x) dx