Home
Class 11
MATHS
The range of the function f(x)=log(e)(3x...

The range of the function `f(x)=log_(e)(3x^(2)+4)` is equal to

A

1) `[ log _(e) 2,oo]`

B

2) `[log _(e)3,oo]`

C

3) `[2 log _(e)3,oo)`

D

4) `[2 log _(e) 2, oo)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

The domain of the function f(x)=(log)_(3+x)(x^2-1) is

Find the range of the function f(x)=x/(1+x^2)

Range of the function f (x)= sqrt(x ^(2) + x +1) is equal to

The range of the function f (x) = sqrt(9 - x ^(2)) is

Range of the function f (x) = (1)/( 3x +2) is

The range of function f (x) = log _(e) sqrt(4- x ^(2)) is given by

Range of the function f(x)=(x^2-3x+2)/(x^2+x-6) is

The function f(x)=log(1+x)-(2x)/(2+x) is increasing on

The function f(x) = (4-x^(2))/(4x-x^(3)) is