Home
Class 11
MATHS
Eccentricity of the ellipse 4x ^(2) + ...

Eccentricity of the ellipse ` 4x ^(2) + y^(2) -8x +4y -8=0` is

A

`(sqrt3)/(2)`

B

`(sqrt3)/(4)`

C

`(sqrt3)/(sqrt2)`

D

`(sqrt3)/(8)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

The centre of ellipse 4x ^(2) + y^(2) -8x + 4y-8=0 is

The centre of the ellipse 4x ^(2) + 9y ^(2) -16x-54y+61=0 is

The eccentricity of the hyperbola 5x ^(2) -4y ^(2) + 20x + 8y =4 is

If e and e' are the eccentricities of the ellipse 5x^(2) + 9 y^(2) = 45 and the hyperbola 5x^(2) - 4y^(2) = 45 respectively , then ee' is equal to

The eccentricity of the ellipse 4x^2+9y^2+8x+36 y+4=0 is 5/6 b. 3/5 c. (sqrt(2))/3 d. (sqrt(5))/3

The eccentricity of the conic x ^(2) -4y ^(2) =1 is

The eccentricity of the ellipse 9x^2+5y^2-18x-20y-16=0 , is:

The co-ordinates of the foci of the ellipse 3x ^(2) + 4y ^(2) -12 x -8y +4=0, are

The foci of the ellipse 25 x ^(2) + 4y ^(2) + 100x -4y + 100 =0 are