Home
Class 11
MATHS
The foci of the ellipse 25 x ^(2) + 4y...

The foci of the ellipse
`25 x ^(2) + 4y ^(2) + 100x -4y + 100 =0` are

A

`((5pi sqrt21)/(10), -2)`

B

`(-2, (5pm sqrt21)/(10))`

C

`((2pmsqrt21)/(10), -2)`

D

`(-2, (2pm sqrt21)/(10))`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

The co-ordinates of the foci of the ellipse 3x ^(2) + 4y ^(2) -12 x -8y +4=0, are

The foci of the ellipse 25x^2+36y^2=225 are

The centre of the ellipse 4x ^(2) + 9y ^(2) -16x-54y+61=0 is

The centre of ellipse 4x ^(2) + y^(2) -8x + 4y-8=0 is

Eccentricity of the ellipse 4x ^(2) + y^(2) -8x +4y -8=0 is

The focus of the conic x ^(2) -6x + 4y +1=0 is

The equation of the directrice of the ellipse 16x ^(2) + 25 y ^(2)= 400 are

x ^(2) -4y ^(2) -2x + 16 y -40=0 reprsents

The foci of the hyperbola 16x ^(2) - 9y ^(2) -64x +18y -90=0 are

For the ellipse 25 x ^(2) + 9y ^(2) -150x-90y + 225 =0, the eccentricity e =