Home
Class 11
MATHS
For any a in R, then locus x ^(2) + y^...

For any `a in R,` then locus
`x ^(2) + y^(2) - 2ay + a ^(2) =0` touches the line

A

`x=y`

B

` x=0`

C

`x+y=0`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

Circle x ^(2) + y^(2)+6y=0 touches

If the circle x ^(2) + y^(2) + 2gx + 2fy+ c=0 touches X-axis, then

The circle x ^(2) + y^(2) +4x -4y+4=0 touches

If x + y+ k =0 touches the circle x ^(2) + y^(2) -2x -4y + 3 =0, then k can be

The point of contact of the tangent to the circle x^2+y^2=5 at the point (1,-2) which touches the circle, x^2+y^2-8x+6y+20=0 is

If the lengths of the tangents drawn from P to the circles x ^(2) + y ^(2) -2x + 4y -20=0 and x ^(2) + y^(2) -2x -8y +1=0 are in the ratio 2:1 , then the locus of p is

Find the equation of the circle concentric with the circle x^2 + y^2 - 4x - 6y - 3 = 0 and which touches the y axis

If the radius of the circel x ^(2) + y ^(2) + 2gx+ 2fy +c=0 be r, then it will touch both the axes, if

If y= e^(ax) sin(bx), show that y2 - 2ay1 + ( a^2 + b^2 ) y = 0