Home
Class 12
MATHS
If: sin^(-1)(1/2)= tan^(-1)x, then x=...

If: `sin^(-1)(1/2)= tan^(-1)x`, then x=

A

`(sqrt(3))`

B

`(1)/(sqrt(3))`

C

`(1)/(sqrt(2))`

D

`(-sqrt(3))`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If sin^(-1) ((2a)/(1+a^2))+ sin^(-1) ((2b)/(1+b^2)) = 2 tan^(-1)x then x=

If "sin"^(-1)(1)/(3)+"sin"^(-1)(2)/(3)=sin^(-1)x , then the value of x is

If tan^(-1)x = sin^(-1)(3/sqrt(10)) , then: x=

If sin{cot^(-1)(x+1)}="cos"(tan^(-1)x), then find xdot

IF tan^-1(1+x)+tan^-1(1-x)=pi/2 , then the value of x is: a)0 b)1 c)-1 d) pi

A solution of equation tan ^(-1) ""(x-1)/(x-2) + tan ^(-1) ""(x+1)/(x+2)=(pi)/(4)

If tan(cos^(-1) x) = sin (cot^(-1)( (1)/(2))) , then find the value of x

If x>=0and theta=sin^-1x+cos^-1x-tan^-1x, then