Home
Class 12
MATHS
Prove that - tan^(-1).(1)/(2)+tan^(-1...

Prove that -
`tan^(-1).(1)/(2)+tan^(-1).(2)/(11)=`

A

(a) `tan^(-1)((1)/(3))`

B

(b) `tan^(-1)((4)/(3))`

C

(c) `tan^(-1)((3)/(4))`

D

(d) `tan^(-1)((1)/(5))`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : tan[cos^(-1)""((4)/(5))+tan^(-1)""((2)/(3))]=(17)/(6)

Prove that : 2 tan^(-1)""(1)/(5)+sec^(-1)""(5sqrt(2))/(7)+2tan^(-1)""(1)/(8)=(pi)/(4)

cos(tan^(-1)((1)/(3))+tan^(-1)((1)/(2)))=

tan^(-1)1+tan^(-1)2+tan^(-1)3=

2tan^(-1)(cosx)=tan^(-1)(2cosecx)

If c_j >0 for i=1,2,..., n , prove that tan^(-1)((c_1x-y)/(c_1y+x))+tan^(-1)((c_2-c_1)/(1+c_2c_1))+tan^(-1)((c_3-c_2)/(1+c_3c_2))+...+tan^(-1)(1/(c_n))=tan^(-1)(x/y)

Prove that : (1+ (1)/(tan^2 A)) (1 +(1)/(cot^2 A)) = (1)/(sin^2 A - sin^4 A)

A solution of the equation tan^(-1)(1+x)+tan^(-1)(1-x)=(pi)/(2) is