Home
Class 12
MATHS
Prove the following: sin^-1(frac{8}{17}...

Prove the following: ` sin^-1(frac{8}{17})+sin^-1(frac{3}{5}) = sin^-1(frac{77}{85})`

A

`sin^(-1)((57)/(85))`

B

`sin^(-1)((47)/(87))`

C

`sin^(-1)((67)/(85))`

D

`sin^(-1)((77)/(85))`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove the following: sin^-1(frac{3}{5})+cos^-1(frac{12}{13}) = sin^-1(frac{56}{65})

Prove the following: 2tan^-1(frac{1}{3}) = tan^-1(frac{3}{4})

Prove the following: sin^-1(frac{-1}{2})+cos^-1(frac{-sqrt3}{2}) = cos^-1(frac{-1}{2})

Prove the following: cos^-1(frac{4}{5})+cos^-1(frac{12}{13}) = cos^-1(frac{33}{65})

Prove the following: sin^-1(frac{12}{13})+cos^-1(frac{4}{5})+tan^-1(frac{63}{16}) = pi

Prove the following: sin^-1(frac{1}{sqrt2})-3sin^-1(frac{sqrt3}{2}) = frac{-3pi}{4}

Prove the following: 2tan^-1(frac{1}{2})+tan^-1(frac{1}{7}) = tan^-1(frac{31}{17})

Prove the following: tan^-1(frac{67}{19}) = tan^-1(frac{5}{13})+cos^-1(frac{3}{5})

Prove the following: 2tan^-1(frac{1}{3})+cos^-1(frac{3}{5}) = frac{pi}{2}

Evaluate the following: cos^-1(frac{1}{2})+2sin^-1(frac{1}{2})