Home
Class 12
MATHS
If in a triangle ABC, (cosA)/a=(cosB)/b=...

If in a triangle ABC, `(cosA)/a=(cosB)/b=(cosC)/c`,then the triangle is

A

isosceles

B

right angled

C

equilateral

D

scalene

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If in triangle ABC, cosA=(sinB)/(2sinC) , then the triangle is

IN triangleABC, (cosC+cosA)/(c+a)+(cosB)/(b)=

If in a triangle ABC, 2cosA=sinBcosecC , then

In DeltaABC,(cosA)/(a)+(cosB)/(b)+(cosC)/(c) =

In a triangle ABC, if sin A sin B= (ab)/(c^(2)) , then the triangle is :

In triangleABC, (b+c)cosA+(c+a)cosB+(a+b)cosC=

ln a DeltaABC , if (cosA)/a=(cosB)/b=(cosC)/c and the side a = 2, then area of the triangle is

In a triangle ABC If ( 2 cos A)/a + ( cos B)/b + (2 cos C)/c = a/(bc) + b/(ca) , find the angle A.

If in a triangle ABC, (s-a)(s-b)= s(s-c), then angle C is equal to