Home
Class 12
MATHS
If in triangle ABC, cosA=(sinB)/(2sinC),...

If in triangle ABC, `cosA=(sinB)/(2sinC)`, then the triangle is

A

(a) Equilateral

B

(b) Isosceles

C

(c) Right angled

D

(d) Obtuse triangle

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If in a triangle ABC, 2cosA=sinBcosecC , then

If in a triangle ABC, (cosA)/a=(cosB)/b=(cosC)/c ,then the triangle is

In a triangle ABC, if sin A sin B= (ab)/(c^(2)) , then the triangle is :

In triangle ABC, a=5, b=4 and cos(A-B)=(31)/(32) In this triangle, c=

If in a triangle ABC, a=5, b=4 and A=pi/2 +B, then the value of tan ""C/2 is-

In /_\ABC if sin2A+sin2B = sin2C then prove that the triangle is a right angled triangle

Select the correct option from the given alternatives: If any /_\ABC , if acosB = bcosA , then the triangle is…...... A) Equilateral triangle B) Isosceles triangle C) Scalene triangle D) Right angled triangle

In a triangle ABC, the value of sinA+sinB+sinC is

If triangle ABC~triangle DEF such that the area of triangle ABC is 9 cm^2 and the area of triangle DEF is 16 cm^2 . If BC=2.1 cm, find the length of EF.